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Abstract: To review the rockburst proneness (or tendency) criteria of rock materials and compare the judgment
accuracy of them, twenty criteria were summarized, and their judgment accuracy was evaluated and compared based on
the laboratory tests on fourteen types of rocks. This study begins firstly by introducing the twenty rockburst proneness
criteria, and their origins, definitions, calculation methods and grading standards were summarized in detail.
Subsequently, to evaluate and compare the judgment accuracy of the twenty criteria, a series of laboratory tests were
carried out on fourteen types of rocks, and the rockburst proneness judgment results of the twenty criteria for the
fourteen types of rocks were obtained accordingly. Moreover, to provide a unified basis for the judgment accuracy
evaluation of above criteria, a classification standard (obtained according to the actual failure results and phenomena of
rock specimen) of rockburst proneness in laboratory tests was introduced. The judgment results of the twenty criteria
were compared with the judgment results of this classification standard. The results show that the judgment results of
the criterion based on residual elastic energy (REE) index are completely consistent with the actual rockburst proneness,
and the other criteria have some inconsistent situations more or less. Moreover, the REE index is based on the linear
energy storage law and defined in form of a difference value and considered the whole failure process, and these
superior characteristics ensure its accuracy. It is believed that the criterion based on REE index is comparatively more
accurate and scientific than other criteria, and it can be recommended to be applied to judge the rockburst proneness of
rock materials.
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surrounding rock failure phenomena are often

1 Introduction

With the continuous development and
utilization of underground space and mineral
resources, more and more underground rock
projects are being constructed at increasing depths
[1-4]. During the excavation of deep buried
tunnels, unconventional

caverns or many

encountered, such as spalling (or slabbing) [5—7],
rockburst [8—10]. Different from spalling failure,
rockburst is a dynamic geological disaster of deep
rock mass, which is usually caused by the sudden
and violent release of elastic strain energy stored in
rock [9—12]. Due to the massive damage caused by
rockburst, more and more attentions have
been drawn to the research on rockburstin the past
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Table 1 Summary of twenty criteria calculation principles and their grading standards of rockburst proneness

Criterion for

Grade of rockburst proneness

No rockburst C?lcrillatlfn Pa?:ﬁtﬁ;: of Existence
proneness ormu ormu No Very Low Medium High Very
low (Slight) (Moderate) (Heavy) high
Strain energy - UET Ugrand U ‘EiT are the elastic strain 2.0-
1 storage index ETT energy density and dissipated energy <20 — 4.99 >50 —
Wer [35, 36] ET  density at the unloading level, respectively.
Enerev impact Ue U° and U* are the pre-peak total input
p herey imb A= — energy density and the post-peak failure <1.0 1.0-2.0 >2.0 —
index Acr [37] U? . .
energy density, respectively.
Potential
energy of o2 oc and Es are the uniaxial compression 50- 100— 150—
3 eclastic strain PES= 2EC strength and the unloading tangential — <50 100 150 200 >200
PES/(kJ-m3) s modulus, respectively.
[38, 39]
Strain energy R d . .
orgeindex , _Upy  Ugrand Ugy are th castic stain enerey 20 s
4 modified Wer ET " ensity an 1§51pate energy .ens1ty at <20 — 35 50 >5.0 —
[40] ET the unloading level, respectively.
Peak-strength U* and U are the peak elastic strain
5 energy impact A'cr=U? energy density and post-peak failure ~ <2.0 2.0-5.0 >5.0 —
index 4 'cr [41] energy density, respectively.
Peal?-strength Ue UF and UM are the peak elastic strain
strain energy P _ . o 2.0-
6 . ET= — 1 energy density and the peak dissipated <2.0 — >5.0 —
storage index U energy density, respectivel 30
WPET [42] gy ys p y'
Effective W Wer and Acr are the strain energy storage
7 energy impact W=A.. x ﬁ index and energy impact index, <18 — — 1.8-2.8 >2.8  —
index W [43] respectively.
Energy formula We is the work done by the pressure, 157 39,25
8  ofrockburst  E=We=2xwexV  we is the pre-peak elastic energy density, <15.7 — — 3 9'2 5 7'8 5 >78.5
E(Q) [44] and V is the volume of the specimen. ) )
. . -
Rockb.urst - Ug U represents the elastic strain energy 0.20— 0.50— 0.80—
9  energy index B = density, and U?®denotes the failure —
T yetyn . 0.20 0.50  0.80 1. 00
Bq[45] q energy density.
wr is the proportion of the elastic strain
Ug=U° x : : :
R @r>  energy density to the input energy density
Surplus _— us-ut at the level of 80% of peak gtrength; U
. = . represents the pre-peak total input energy
10 energy index U2 e . >0
Wr [46] density; Uq represents the peak elastic
AW strain energy density; U? represents
B U the post-peak failure energy density; and
AW represents the surplus energy density.
R:Iile(iglii?::c U*® and U? are the peak elastic strain 50— 150-
P . ) . < o S o
11 Aee/(k)-m) er=U—U" energy density ansi the post peak failure <50 150 200 200
[41] energy density, respectively.
Peak-strength
potential
100- 200-
12 energy of — — <100 — 200 300 >300 —
elastic strain
PESP/(kJ-m3)
Brittleness U° U;,IM and U° are the peak elastic strain 12
i i BIM= ; — — >15 o 1.0-12 —
13 index modified S energy density and the pre-peak total . .0-1.
. - 1.5
BIM [47, 48] BIM input energy density.
Deformation u and u1 are the total deformation and
|4 Dritdeness o u &% permanent deformation; ¢, and & are the .0 2.0~ 6.0~ 590
index You g, plastic strain and the elastic strain, ’ 6.0 9.0 ’
Ku [49] respectively.

to be continued
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Continued

Criterion for

No. rockburst Calculation formula

Parameters of formula

Grades of rockburst proneness

Existence

proneness No Very Low Medium High  Very
low (Slight) (Moderate) (Heavy) high
o is an adjustable parameter that
Brittleness is usually ta.ket} as 0.1; oc apd ot
index of are the uniaxial compressive
o, & iaxi i _
15 rockburst B=ag x 2oy &t strength and umgXlal tensile 30 3.0 - ~5.0 o
o, & strength, respectively; ef and 5.0
proneness ;
B[50] &b are the pre-peak total strain
and post-peak total strain,
respectively.
Strength -
. o oc and ot are the uniaxial 5 .
16 b.r ittleness B=—= compressive strength and tensile <14.5 — 145 267 >40 —
index Bi o, treneth. T tivel 26.7 40
38, 51] strength, respectively.
biittrtel;lfet:}sls p oc and o are the uniaxial
17 index B,= ;c compressive strength and <10 — — 10-18 >18 —
A . .
B> [49] tensile strength, respectively.
bf;trtelzr%gsls . oc and o are the uniaxial
18 index By= ;c compressive strength and <15 — 15-18 18-22 >22 —
A . .
B [40] tensile strength, respectively.
Decrease EG is the pre-peak deformation
19 modulus index DMI=Ec/|Em| modulus, and Ewm is the >1.0 <I1.0
DMI [52, 53] post-peak deformation modulus.
Th is the interval time between
Lag time ratio the peak strength point and S-R 0.20— 0.15-
20 index Tr=T1/Tp point and is marked as the lag  >0.25 O 25 0 20 <0.15 —
Tr [54] time, and 7% is the time of the ’ ’
whole loading period.
2.1 Strain energy storage index (Wgr) A
. . . o
Wer [35, 36] is a typical bursting proneness (0.8-0.9)0,
discriminant criterion for rocks, and is widely l— i
) ] . Dissipated energy
involved in many literatures [57—59]. The value of - density Uy
Wer can be obtained according to the single gé?lsstllt;sgi:f SESEY
loading—unloading uniaxial compression test, where )
. . . . Unloading curve
the unloading level (the ratio of unloading point
. . Initial loading curve
stress to the uniaxial compressive strength) ranges
from 0.8 to 0.9, as shown in Figure 1.
It is defined as the proportion of the elastic
strain energy density to the dissipated energy
density at the corresponding unloading level. The 5 i ~ "

formula for calculating the criterion is as follows:

Uty = |7 ods (1)
Ul = [ ode 2)
UgT:UET - Ugr )
WET:U_ET 4

P g e ek

Figure 1 Calculation diagram of Wgr and K,

where UP., U, and Ul are the input energy
densities, the elastic strain energy density and
dissipated energy density at the corresponding
unloading level, respectively; glk and & are the
strain at the corresponding unloading level, and the
residual strain when the stress is unloaded to O,
respectively.
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Figure 25 Comparison of PES and PESP according to
tests for fourteen rock materials

to calculate the peak elastic strain energy are more
scientific and accurate. Among the summarized
twenty criteria, Agr meets all of the above
characteristics, which indicates Agr 1S a scientific
and reliable rockburst proneness criterion.

7 Conclusions

1) Twenty criteria for rockburst proneness
were summarized in detail, including their origins,
definitions, calculation methods and grading
standards. The detailed provide
convenience for evaluating the rockburst proneness
of rock materials.

2) The judgement results of the twenty criteria
were obtained by a series of laboratory tests on

summaries

fourteen types of rocks. The results show that
different criteria have diverse judgment results even
for the same rock type, which implies the accuracy
of them is worth evaluating and comparing.

3) The judgement accuracy of the twenty
criteria was evaluated based on a classification
standard for the rockburst proneness in laboratory
tests (S;) obtained from qualitative and quantitative
aspects according to the practical test phenomena.
The result shows that the judgment results of Agr
are completely consistent with the actual rockburst
proneness. In contrast, all the other criteria have
some inconsistencies.

4) The characteristics of the criteria were
analyzed. The results show that the criteria that are
energy-based, defined in the form of a difference
value, involving the whole rock failure process, and
based on precise methods to calculate parameters
are more scientific and can evaluate the rockburst
proneness accurately. Agr meets all these
characteristics, which further demonstrates the
superiority of Agr. Thus, we conclude that Agr is
relatively more accurate and scientific than other
criteria and it is recommend to evaluate the
rockburst proneness of rock materials.
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HAMRH A R PR 7T I8 508

FEEE: O 1A AR R G G HE PR AT SR A LU, ASSTIAGN TELE I 20 Fhoa bk
Wi vEA s, JERI 14 Aoa AdtAT 17— RASER SN, AR AE REZ S VR IX 20 Flea e
FIEIAAERE . SCRE SR TEA 2 T 20 Blia e MR, AR HSCR i Ab . 5 L TRk
BRI AR GebritE. BEJ, X 14 Foa AT 7 — RPN =, B b i ik . — ik
T s 288 B A s 4 6 AT B2 PG B 2 %, R PR IR B TH AR 1 20 R CRIHE B X B Rb s A R HR i
FPEFIRI SR BEAh, 8T Ge— Al R A SR HERYE, ST T Rk T S S A A
FERAR G5 AN R 5 A ) 1R 7> AR e o REARYE 1% 7> SOARHEARS ) B8 0 R SE P A M 5 20
Tl BB S R AT XL, SRR, T RIR B REIREOX — FHR A IS5 RS 14 Floa A58
B A P 1 56 4 — B8, FLAMPIE (0 45 SRS AE RV DL o TR 50 1 R4 DL LRVE A E LA 9 2l
i HAZE R T E XL, HHE T a A e d BRI RER . LR Rl Or 1 HEA 50 e AR
FEANHERAE . ARGE A_E 3 n] DAFG S SR A Sk BE 1 500 o P 0 i 28 0 T A 4 37 B
BEEL HER, XA AR A B R PR AT PP N HERE DL e S T ik B
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