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TE5E X Background and significance

In addition to solid legal basis and strong regulatory authority, emissions
monitoring techniques are key elements for achieving ever strict environmental

requirements.
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* However, most of existing portable emission measurement system (PEMS)

are expensive and bulky, making it impractical to roll out to the vehicle market.
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* Based on correspondence between vibration response and emissions, it is —
possible to achieve cost-effective non-intrusive on-line monitoring of engine in @&
real-driving emissions (RDE) "
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Cylinder Liner
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- Combustion shock is one of the most important excitation sources of engine vibration and noise emissions.
RGP R RSN AR F RN REZ AR —,

- The combustion pressure is closely related to the in-cylinder temperature. It has been confirmed that there is a

correspondence between combustion pressure and temperature-dependent emissions.
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HE 5¥xE18Y5<BL Correspondence between emissions and vibration
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vibration combustion exhaust emission
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HAEZ1 Technical route 1
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HAEZ2 Technical route 2
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Design of experiments

BRZH
Specification of the test engine

Fuel tank Manufacturer Quan Jiao Power Co., Ltd.,
e PR. China
Engine model QCH1110
Number of cylinders single
- Bore/stroke /mm 125/120
Control Compression ratio 18
system ; Rated power/ kW 14.7
Dynamometer Em.ission meter

3%k speed: 1200r/min, 1400r/min, 1600r/min, 1800r/min
i load: 10N.m. 30N.m. 50N.m




RIS RN <EX Correspondence between combustion and vibration

& A1: FEM-based dynamic model

Cylinder block
<¢—— Cylinder head \

Cylinder head
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= (EMI1E7S Modal characteristics)
Structural transient dynamics simulation

«  (FEZMELTR Contact constraints)
Establishment of Finite Element Model Nonlinearities of assembly constraint




BRI SIREIICEE Correspondence between combustion and vibration
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BRI SIREIICEE Correspondence between combustion and vibration
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BRI SIREIRXEL Correspondence between combustion and vibration

##12: Combination of dynamic and tribological model
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> Measured vibration 720° (B)
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The tribo-dynamics model can effectively predict the non-linear trend of vibration response
with increasing speed.
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LE ) Reconstruction of in-cylinder pressure
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To facilitate the normalized similarity analysis of vibration and pressure, it is necessary to first gray-scale the time-frequency
matrices of measured signals.

AETXNRNFE DS TA—HEAED T, DE RN NEE SRR FEH TR ZALTE,
In order to highlight more detailed information, a gamma correction process is performed on linear RGB images.
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54 Reconstruction of in-cylinder pressure
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Before gamma correctlon Mean SSIM= 0.6571

After gamma correctlon Mean SSIM= 0.3598
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SSIM maps of pressure and vibrations before and after gamma correction

SSIM map of in-cylinder pressure and head vibration after gamma correction shows more obvious similarity pattern
related to combustion event, as marked by the triangle frame.
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Based on the similarity map, a two-dimensional filter can be designed.
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54 Reconstruction of in-cylinder pressure
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Reconstructed second-order pressure accurately retains fluctuation information related to combustion shocks.
BENIIE_—MSESUERBR SRR HER XENEINER

Based on the reconstructed cylinder pressure, predictive variables can be selected for establishment of a predictive model.
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NE S %94 Weight distribution of vibration events

AR B2 2 Technical route 2
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HEBU L IEM Virtual sensing of NOx emissions

5 Predictor variables b. Principal component analysis  ¢. Comparison of predicted and
| measureleOxl

100 f f f i i 700 . . A
O PCR2 o
800 —_ A PCR5 i
_ X 98 600 k|~ Measured=Predicted
600 - —_— 2&
@ o = i
° = g5l (e}
2 4004 = 8500
= E S
E 200 C O
94 L
< 8 Z 400 6
0 o E
12 .2 | E o ]
N @ ©
= T 300 ¢
= [13]
Operating 0 o — - %3
conditions

N N A N
Principal components 100 200 300 400 500 600 700
Measured NOx(ppm)




Conclusions

By comparing the measured NOx emissions with the predicted values, it can be known that the
regression model constructed based on the reconstructed cylinder pressure from vibration signals
has a good prediction of diesel engine NOx emissions under various operating conditions. The
coefficient of determination (R2) between the predicted value and the measured value is
0.971~0.995.
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The vibration-based virtual sensor of NOx emission ( or PM emissions) is expected to provide a cost-
effective non-intrusive on-line monitoring technology for vehicles in real-driving emissions.
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